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Abstract The problem of Group Testing is to identify defective items out of a set of objects
by means of pool queries of the form “Does the pool contain at least a defective?”. The
aim is of course to perform detection with the fewest possible queries, a problem which has
relevant practical applications in different fields including molecular biology and computer
science. Here we study GT in the probabilistic setting focusing on the regime of small defec-
tive probability and large number of objects, p → 0 and N → ∞. We construct and analyze
one-stage algorithms for which we establish the occurrence of a non-detection/detection
phase transition resulting in a sharp threshold, M , for the number of tests. By optimizing the
pool design we construct algorithms whose detection threshold follows the optimal scaling
M ∝ Np| logp|. Then we consider two-stages algorithms and analyze their performance
for different choices of the first stage pools. In particular, via a proper random choice of
the pools, we construct algorithms which attain the optimal value (previously determined in
(Mézard and Toninelli, arXiv:0706.3104)) for the mean number of tests required for com-
plete detection. We finally discuss the optimal pool design in the case of finite p.

Keywords Group testing · Phase transitions · Information theory

M. Mézard (�) · M. Tarzia
Université Paris-Sud, LPTMS, UMR8626, Bât. 100, 91405 Orsay cedex, France
e-mail: mezard@lptms.u-psud.fr

M. Mézard · M. Tarzia
CNRS, LPTMS, UMR8626, Bât. 100, 91405 Orsay cedex, France

C. Toninelli
Université Paris VI et VII, LPMA, UMR7599, 4 Pl. Jussieu, Paris, 75005 France

C. Toninelli
CNRS, LPMA, UMR7599, 4 Pl. Jussieu, Paris, 75005 France

http://dx.doi.org/10.1007/s10955-008-9528-9
mailto:mezard@lptms.u-psud.fr


784 M. Mézard et al.

1 Introduction

The general problem of Group Testing (GT) is to identify defective items in a set of objects.
Each object can be either defective or OK and we are allowed only to test groups of items via
the query “Does the pool contain at least one defective?”. The aim is of course to perform
detection in the most efficient way, namely with the fewest possible number of tests.

Apart from the original motivation of performing efficient mass blood testing [1], GT has
been also applied in a variety of situations in molecular biology: blood screening for HIV
tests [2], screening of clone libraries [3, 4], sequencing by hybridization [5, 6]. Furthermore
it has proved relevant for fields other than biology including quality control in product testing
[7], searching files in storage systems [8], data compression [9] and more recently in the
context of data gathering in sensor networks [10]. We refer to [11, 12] for reviews on the
different applications of GT.

The more abstract setting of GT is the following. We have N items and each one is
associated with a binary random variable x which takes value 1 or 0. We want to detect the
value of all variables by performing tests on pools of variables. Each test corresponds to
an OR function among the variables of the group, i.e. it returns a binary variable which is
equal to 1 if at least one variable of the pool equals 1 and it is equal to 0 otherwise. Here
we will only deal with this (very much studied) choice for the tests, often referred to as the
gold-standard case. It is however important to keep in mind for future work that in many
biological applications one should include the possibility of faulty OR tests [2, 13].

The construction of any algorithm for GT involves two ingredients: the pool design (the
choice of the groups over which tests are performed) and the inference procedure (how to
detect the value of the items given the result of the tests). The pool design can be composed
by one or more stages of parallel queries. For one-stage or fully non-adaptive algorithms
all tests are specified in advance: the choice of the pools does not depend on the outcome
of the tests. This would be in principle the easiest procedure for several biological applica-
tions. Indeed the test procedure can be destructive for the objects and repeated tests on the
same sample require more sophisticated techniques. However the number of tests required
by fully non-adaptive algorithms can be much larger than for adaptive ones. The best com-
promise for most screening procedures [14] is therefore to consider two-stage algorithms
with a first stage containing a set of predetermined pools (which are tested in parallel) and
a second stage which consists in an individual test of all the items whose value has not been
determined with certainty in the first stage. Here we will construct one-stage approximate
algorithms and two-stage exact algorithms.

In all our study we will focus on probabilistic GT in the Bernoulli p-scheme, i.e. the
situation in which the status of the items are i.i.d. random variables which take value one
with probability p and zero with probability 1 − p. In particular, we will be interested in
constructing efficient detection algorithms for this GT problem in the limit of large number
of objects and small defective probability, N → ∞ and p → 0, and we will focus on the
case N → ∞ and p → 0 with p = 1/Nβ (the case β = 0 stands for p → 0 after N → ∞).
This choice was first discussed by Berger and Levenshtein in the two-stage setting in [15]
where they proved that for β ∈ (0,1) the minimal number of tests optimized over all exact
two-stage procedure, T (N,p) is proportional to Np| logp|.

In the one-stage case we will establish the occurrence of a phase transition: considering
two simple inference algorithms, we identify a threshold M such that when N → ∞ the
probability of making at least one mistake in the detection goes to one if M < M and to zero
if M > M . By optimizing over the pool distribution, we will construct algorithms for which
the detection threshold shows the optimal scaling M = (1 − β)(β)−1(log 2)−2Np| logp|.
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Recently in [16] the value of the prefactor of T has been determined exactly when
β ∈ [0,1/2) for two-stage procedures. More precisely, the authors have shown that:
limN→∞ T /(Np| logp|) = 1/(log 2)2. Here we will discuss the performance of two-stage
algorithms for different choices of the first stage pool design. In particular we will show that
the optimal value is obtained on random pools with a properly chosen fixed number of tests
per variable and of variables per test (regular-regular case) and also when the number of
tests per variable is fixed but the number of variables per test is Poisson distributed (regular-
Poisson case). On the other hand we will show that this optimal value can never be attained
in the Poisson-regular or in the Poisson-Poisson case.

The paper is organized as follows: In Sect. 2 we introduce the factor graph representation
of the problem in the most general case. In Sect. 3 we describe the first simple inference
procedure which allows to identify the sure variables. In Sect. 4 we analyze one-stage ap-
proximate algorithms, while in Sect. 5 we turn to the two-stage exact setting. Finally, in
Sect. 6 we give a perspective of our work in view of applications.

2 Pool Design: Random Factor Graphs

A convenient way to define the pool design of each stage is in term of a factor graph rep-
resentation. We build a graph with two types of vertexes (also called nodes) corresponding
to variables and tests. Variable nodes will be denoted by indexes i, j, . . . and depicted by
circles. Function nodes will be denoted by indexes a, b, . . . and depicted by squares. When-
ever a variable i belongs to test a we set an edge between vertex i and a. Thus if N is
the overall number of items and M the number of parallel tests in the stage, we obtain a
bipartite graph with N variable nodes and M test nodes with edges between variables and
tests only (in Fig. 1 we depict a case with N = 6,M = 4). We denote by �n the fraction
of variable nodes of degree n and by Pn the fraction of function nodes of degree n. We
will also use a practical representation of these degree profiles, standard in coding theory, in
terms of their generating functions �(x) = ∑

n≥0 �nx
n and P (x) = ∑

n≥0 Pnx
n. In all our

pool designs, the first stage is based on a randomly generated factor graph, from the uniform
distribution over the set of graphs which have degree profiles �(x) and P (x). The average
variable node and function node degrees are given respectively by

∑
n≥1 �nn = �′(1) and

∑
n≥1 Pnn = P ′(1). We also denote by λl and ρk the probability that a randomly chosen

Fig. 1 Left: The factor graph corresponding to the first stage of testing. Circles represent variables.
Squares represent tests, they are filled when the test output is one, empty when it is zero. Variables i and
j are sure zeros, variable k is a sure one, variables m,n and l are undetermined. Right: The corresponding
reduced graph where the sure variables (i, j, k) and the strippable tests (b, c, d) have been erased. Variable l

is isolated
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edge in the graph is adjacent to a variable node of degree l and to a test node of degree k,
respectively. They are given by:

λl = l�l
∑

l′≥1 l′�l′
, ρk = kPk

∑
k′≥1 k′Pk′

. (1)

The edge perspective degree profiles, defined by

λ[x] =
∑

l≥1

λlx
l−1, ρ[x] =

∑

k≥1

ρkx
k−1 (2)

are thus given by λ[x] ≡ �′[x]/�′(1) and ρ[x] ≡ P ′[x]/P ′(1).
Note that the number of checks M can also be written in terms of these sequences,

because the mean degree of variables, 〈l〉 = �′(1), and the mean degree of tests, 〈k〉 =
P ′(1), are related by N〈l〉 = M〈k〉. As �′(x) = �′(1)�(x) and �(1) = 1 we get 〈l〉 =
[∫ 1

0 λ(x)dx]−1. Therefore

M = N

∫ 1
0 ρ(x)dx

∫ 1
0 λ(x)dx

. (3)

3 First Stage: Sure Variables and Isolated Variables

After the first stage of parallel tests we will either use an inference procedure to identify
the result (in the one stage case) or choose a new set of pools based on the outcomes of
the previous tests (in the two stage case). In our problem, the prior distribution of the N

variables, x = (x1, . . . , xN), is Bernoulli: Bp(x) = ∏N

i=1 pxi (1 − p)1−xi . Given the outputs
of the tests, the inference problem consists in finding the configuration x̄ which maximizes

P (x) = Bp(x)

Z

M∏

a=1

1(Ta(x) = ta). (4)

Here ta is the value of test a and Ta(x) = 1 if
∑

j∈Na
xj > 0, Ta(x) = 0 otherwise, where

Na is the pool of variables connected to a.
Since the minimization of the above function is in general a very difficult task, we start

by checking whether some variables are identified with certainty by the first stage and then
try to extract information on the remaining variables (see Fig. 1). The first observation is
that in order for a variable to be a sure zero it should belong to at least one test with outcome
zero. On the other hand in order to be a sure one it should belong to at least one positive test
in which all the other variables are sure zeros. Variables that are neither sure zeros nor sure
ones are the undetermined variables.

We start by noticing that if a test contains only zeros, or if it contains at least a sure one,
then it does not carry any information on the undetermined variables. We call such a test
strippable, as is the case for tests b, c, d in Fig. 1. We have no information on a variable if
it is undetermined and all the tests to which it belongs are strippable. Such variables will be
called isolated, as is the case for variable l in Fig. 1. The above terminology is motivated
by the fact that all the information on the undetermined variables is encoded in a reduced
graph (see right part of Fig. 1) constructed via the following stripping procedure: erase
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all variable nodes which correspond to sure variables and all test nodes which are strippable
(note that isolated variables are those that are not connected to any test in the reduced graph).
Therefore the inference problem corresponding to the minimization of (4) can be rephrased
as a Hitting Set problem on the corresponding reduced graph [17].

Given a variable i and a choice of the pools, the probability that xi is a sure zero (pi
s0)

or a sure one (pi
s1) can be derived as follows. Let us denote by Na the set of variable nodes

connected to test a and by Ni the set of test nodes connected to variable i. We introduce the
indicator Gi(x) that xi is a sure 0 as well as the indicator Vi(x) that xi is a sure one:

Gi(x) = (1 − xi)

{

1 −
∏

a∈Ni

Wi,a(x)

}

, (5)

Vi(x) = xi

{

1 −
∏

a∈Ni

[

1 −
∏

k∈Na
k �=i

Gk(x)

]}

(6)

which are expressed in terms of

Wi,a(x) = 1 −
∏

j∈Na
j �=i

(1 − xj ). (7)

Then pi
s0 and pi

s1 are given by:

pi
s0 :=

∑

x

Bp(x)Gi(x), (8)

pi
s1 :=

∑

x

Bp(x)Vi(x), (9)

where the sum is over all x ∈ {0,1}N .
It is clear that (8) for pi

s0 involves only the variables at distance two from i. Thus, if i

does not belong to a loop of length four in the factor graph, Wi,a are independent variables
and the mean over the variable values in (8) can be easy carried out yielding

pi
s0 = (1 − p)

[

1 −
∏

a∈Ni

(1 − (1 − p)ka−1)

]

, (10)

where ka = |Na | is the number of variables which belong to test a. We now take the expec-
tation value of this quantity of the random factor graph ensemble with given degree profiles
�,P . This leads to pi

s0 = (1 − p)S0, with:

S0 :=
∑

l

�l

(

1 −
(

1 −
∑

k

ρk(1 − p)k−1

)l )

= 1 − �[1 − ρ[1 − p]]. (11)

Formula (9) for pi
s1 involves only variables at distance at most 4 from i. If the ball

centered in i of radius 4 does not contain any loop, we can perform easily the mean over the
variables in (9) and get pi

s1 = pS1 with

S1 := 1 − �[1 − ρ[(1 − p)(1 − λ[1 − ρ[1 − p]]]]. (12)
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The probabilities that ta is strippable (Ra), xi is an isolated zero (I i
0) and xi is an isolated

one (I i
1) are instead given by

Ra =
∑

x

Bp(x)

[
N∏

j∈Na

(1 − xj ) + 1 −
N∏

j∈Na

(1 − Vj (x))

]

, (13)

I i
0 =

∑

x

Bp(x)(1 − xi)
∏

a∈Ni

(

1 −
∏

j∈Na
j �=i

(1 − Vj (x))

)

, (14)

I i
1 =

∑

x

Bp(x)xi

∏

a∈Ni

(

1 −
∏

j∈Na
j �=i

(1 − Vj (x))

)

. (15)

In this case, if there is no loop in the ball of radius 6 centered on i, we can again take
the expectation over the random graph distribution which yield I0 = (1 − p)I and I1 = pI ,
with

I = �
[
1 − ρ[1 − pS̃1]

]
, (16)

S̃1 := 1 − λ[1 − ρ[(1 − p)(1 − λ[1 − ρ[1 − p]]]]. (17)

4 One-Stage Algorithms

In this section we analyze one-stage algorithms when the number of items, N , goes to in-
finity and the defect probability, p, goes to zero as p = 1/Nβ with β > 0. When construct-
ing the pools we use random graph ensembles of two types: either regular-regular (R-R)
graphs (fixed connectivity both for test and variable nodes) or regular-Poisson (R-P) graphs
(fixed connectivity for variables, Poisson distribution for the test degree). As for the infer-
ence procedure we will consider two types of algorithms: Easy Algorithm (EA) and Belief
Propagation (BP). We will show that both undergo a non-detection/detection phase tran-
sition when one varies the number of tests, M : we identify a threshold M such that for
M < M the overall detection error goes (as N → ∞) to one while for M > M it goes
to zero. When β < 1/3 we can establish analytically the value of M which turns out to
be equal for the two algorithms: EA and BP have the same performance in the large N

limit. We will explain why this transition is robust and we will optimize the pool design
(i.e. choice of the parameters of the regular-regular and regular-Poisson graphs) to obtain
the smallest possible M . The resulting algorithms have a threshold value which satisfies
limN→∞ M/(Np| logp|) = (1 − β)β−1(log 2)−2. This is the same scaling in N and p as
for the optimal number of tests in an exact two-stage algorithm, albeit with a different pre-
factor.

4.1 Pool Design

Given a random graph ensemble, we denote by M the number of test nodes, by K the mean
degree of tests (which also coincides with the degree of each test in the R-R case) and by L

the degree of each variable and we work in a scaling regime characterized by two parameters
c, α, defined by:

M = cN1−β logN, K = α/p, L = MK/N = cα logN. (18)
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The degree profile polynomials are:

�R-R[x] = xL, λR-R[x] = xL−1, P R-R[x] = xK, ρR-R[x] = xK−1,

�R-P[x] = xL, λR-P[x] = xL−1, P R-P[x] = ρR-P[x] = eK(x−1).

Then, if the hypotheses on the absence of short loops which lead to (11), (17) and (16) are
valid, the probabilities S0, S1 and I are given in the R-R case by:

S0 = 1 − (1 − (1 − p)K−1)L, (19)

S1 = 1 − {
1 − (1 − p)K−1

[
1 − (

1 − (1 − p)K−1
)L−1]K−1}L

, (20)

S̃1 = 1 − {
1 − (1 − p)K−1

[
1 − (

1 − (1 − p)K−1
)L−1]K−1}L−1

, (21)

I = (
1 − (1 − pS̃1)

K−1
)L

. (22)

In the R-P case they are given by:

S0 = 1 − (1 − exp(−Kp))L, (23)

S1 = 1 − (
1 − exp

(−Kp − K(1 − p)(1 − e−Kp)L−1
))L

, (24)

S̃1 = 1 − (
1 − exp

(−Kp − K(1 − p)(1 − e−Kp)L−1
))L−1

, (25)

I = (
1 − exp(−KpS̃1)

)L
. (26)

It is easy to verify that in leading order when N → ∞ and p → 0 the above quantities
for the regular regular and regular Poisson case coincide. They are given by

S0 � 1 − Nd, (27)

S1 �

⎧
⎪⎪⎨

⎪⎪⎩

(cα logN)e−α(1+Nd+β/b) if β + d > 0,

1 − Nd if β + d < 0,

1 − N−cα| log(1−exp(−2α))| if β + d = 0

(28)

and

I �

⎧
⎪⎪⎨

⎪⎪⎩

(cα logN)cα logNe−α2c logN(1+Nd+β/b) if β + d > 0,

Nd if β + d < 0,

Nd if β + d = 0,

(29)

where we set b = b(α) = (1 − exp(−α)) and d = d(α, c) = −cα| logb|, for N → ∞.
Let us discuss in what range of β one expects the above asymptotic behaviors to be valid.

As explained in Sect. 3, the only hypothesis in their derivation consists in neglecting the
presence of some short loops in a proper neighborhood of the chosen variable. In particular
the equation for S0 is valid if we can neglect the presence of loops of length four through
a given variable. Consider for definiteness the R-R case. The probability of having at least
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one loop of length four through i, P (L4), verifies

P (L4) ≤ L2N

(
M

L−1

)

(
M

L

) � (logp)2

Np2

which goes to zero for β < 1/2. Thus we are guaranteed that (19) is correct in this regime.
By the same type of reasoning, we can show that the formulas for S1 and I are valid respec-
tively for β < 1/4 and β < 1/6. However through the following heuristic argument, one
can expect that the formula for S1 (resp. I ) be correct in the larger regimes β < 1/2 (resp.
β < 1/3). Indeed, when we evaluate S1 we need to determine whether variables at distance
2 from a variable i are sure zeros. We expect the probability of this joint event to be well
approximated by the product of the single event probabilities if the number of tests that a
variable at distance 2 from i shares with the others is � L and if the number of variables
that a test at distance 3 from i shares with the others is � K . Both conditions are satisfied
if β < 1/2 (the probability that a test at distance 3 belongs to more than one variable at
distance 2 goes as (1 − K/N)LK and the probability that a variable at distance 4 belongs to
more than one test at distance 3 goes as (1 − K/N)L2K ). For I the argument is similar but,
since we have a further shell in tests and variables to analyze in order to determine whether
a variable is isolated or not, we get an extra factor KL in the exponents which lead to the
validity of the approximations only for β < 1/3.

4.2 Easy Algorithm (EA)

A straightforward inference procedure is the one that fixes the sure variables to their value
and does not analyze the remaining information carried by the tests, thus assigning to zero
all other variables (since p < 1/2, the most probable value of a variable in absence of in-
formation is 0). We call this procedure Easy Algorithm (EA). By definition the probability
that a variable is set to a wrong value, Ebit, is given by Ebit = p − pS1. In the hypothesis
of independent bit errors, i.e. if we suppose that the probability Etot of making at least one
mistake satisfies Etot = 1 − (1 − Ebit)

N and if β < 1/2 (see the discussion at the end of
previous section), we can apply (28) which yields

Etot �

⎧
⎪⎪⎨

⎪⎪⎩

1 − exp(−N1−β) if β + d > 0,

1 − exp(−N1−β+d) if β + d < 0,

1 − exp(−N1−β+cα log(1−exp(−2α))) if β + d = 0

(30)

both for the R-R and R-P graphs. Therefore EA displays a phase transition in the large N

limit, when one varies the rescaled number of tests, c = M/(N1−ββ logN), from a region at
c < c̄(α) in which the probability of at least one error, Etot, goes to one, to a region c > c̄(α)

where it goes to zero. The threshold of this regime is given by

c̄(α) = 1 − β

α| log(1 − exp(−α))| . (31)

The most efficient pools, within the R-R and R-P families, are obtained by minimizing c̄(α)

with respect to α = Kp. The value of the optimal threshold c̃ = minα c̄(α) and the parameter
α̃ at which the optimal value is attained, namely c(α̃) = c̃, are

c̃ = 1 − β

(log 2)2
, α̃ = log 2.
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Fig. 2 (Color online) (a) Error probability as a function of c using EA (red circles) and BP (black squares)
for regular-regular graphs. The graph parameters are chosen as in (18) with p = N−β , β = 1/4, α = α̃ = log 2
and N = 43321. The continuous line corresponds to the theoretical prediction of (30). (b) Error probability
as a function of c for EA. We set again β = 1/4 and α = log 2, while we choose N = 1109 (green dia-
monds), N = 10401 (blue squares), and N = 63426 (red circles). The vertical dashed line corresponds to the
threshold c, given by (31)

This, together with (18), gives a threshold

M = N1−β | logN |(1 − β)(log 2)−2 (32)

for the number of tests. Note that the threshold in the case β = 0, i.e. if we send p → 0 after
N → ∞, is infinite. This corresponds to the fact that for any choice M = CNp| logp| and
K = α/p the bit error p(1 − S1) stays finite when N → ∞, since K and L depend only
on p.

In order to verify the above results and the approximations on which they are based
we have performed numerical simulations in the case of R-R graphs with β = 1/4, α = α̃

and different values of c. The results we obtain confirm that in this regime bit errors can be
regarded as independent and formulas (19)–(22) are valid. The values of Etot as a function of
c are depicted in Fig. 2a for different values of N . The value of the threshold connectivity and
the form of the finite size corrections for the total error (continuous curves) are in excellent
agreement with the above predictions (30) and (31). These results support our hypotheses of
independent bit errors and of neglecting small loops, and the agreement of the error curve
with the theoretical prediction (30) supports our prediction of a phase transition taking place
when N → ∞ regime in this β < 1/2 case.

On the contrary, we have verified that when β > 1/2 both the independent bit error
approximation and the approximation leading to (30) fail, as expected. This can be seen
for example in Fig. 3a where we report the results for the case β = 2/3. In this case the
numerical results (black dots) differ from the continuous line which corresponds to (30).
With our method we cannot make any prediction on the case β > 1/2.

4.3 Belief Propagation (BP)

The algorithm considered in previous section is very simple but it does not exploit the infor-
mation contained in the reduced graph (see Sect. 3). Much more information is contained
in the results of the first stage tests. In principle, in order to exploit it optimally, one should
find the most probable configuration according to (4). This would take exponential time.
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We shall try instead to perform this task approximately with a fast algorithm based on Be-
lief Propagation (BP). The BP algorithm gives an estimate, for each variable i, of the value
of the marginal probability P (xi). Then we will set to one (to zero) variables for which
P (xi) > 1/2 (respectively P (xi) ≤ 1/2). Let us derive the BP equations for the marginal
probabilities. We denote by Ni (Na) the set of function (variable) nodes connected to the
variable node i (respectively to the function node a), by P (xi)

i→a the probability of value
xi for the i-th variable in absence of test a and by P (x1, x2, . . . , xn)

(a) the joint cavity distri-
bution in the absence of a (so that P (xi)

i→a = P (xi)
(a))). We can then write

P (xi)
i→a ∼= pxi (1 − p)1−xi

∏

b∈Ni\a

(∑

�x∂a,i

P (�x∂a,i
)(b)1(Tb(x) = tb)

)

,

where by �x∂a,i
we denote the vector {xj |j ∈ Na \ i}, and the symbol ∼= means equal up to a

multiplicative constant, which is fixed by the normalization of the probability. Furthermore
we make the usual assumption that the joint cavity distributions P (�x∂a,i

)(b) factorize

P (�x∂a,i
)(b) =

∏

j∈Na\i
P (xj )

(b) =
∏

j∈Na\i
P (xj )

j→b

which leads to closed equations for the set of single variable cavity probabilities. In order to
simplify these equations we define a normalized message P (xi)

a→i from function node a to
variable node i as

P (xi)
a→i ∼=

∑

j∈Na\i
P (xj )

(a)1(Ta(x) = ta)

and therefore

P (xi)
i→a ∼= pxi (1 − p)1−xi

∏

b∈Ni\a
P (xi)

b→i

and

P (xi) ∼= pxi (1 − p)1−xi

∏

b∈Ni

P (xi)
b→i .

Using the fact that xi takes values in {0,1} and that both P a→i and P i→a are normalized we
introduce cavity fields hi→a and cavity biases ua→i defined as follows

P (xi)
a→i = (1 − ua→i )δxi ,0 + ua→iδxi ,1,

P (xi)
i→a = (1 − hi→a)δxi ,0 + hi→aδxi ,1.

The BP equations for the cavity biases and fields are:

ua→i =
{

0 if ta = 0,

(2 − ∏
j∈Na\i (1 − hj→a))

−1 if ta = 1

and

hi→a = p
∏

b∈Ni\a ub→i

p
∏

b∈Ni\a ub→i + (1 − p)
∏

b∈Ni\a(1 − ub→i )
.
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Our BP-based detection procedure for GT is the following. First initialize the cavity and
bias fields to some random values. Then iterate BP equations above until one reaches a fixed
point, which is a solution of BP equations. Then, the marginal probability distribution P (xi)

can be written as

P (xi) = (1 − Hi)δxi ,0 + Hiδxi ,1

with the full local field Hi satisfying

Hi = p
∏

b∈Ni
ub→i

p
∏

b∈Ni
ub→i + (1 − p)

∏
b∈Ni

(1 − ub→i )
.

The inference procedure is completed by setting xi to one if Hi > 1/2, and to zero if Hi ≤
1/2. Note that this BP algorithm automatically gives the correct value for the sure variables.
Furthermore one should expect that its performance is better than EA, since it also analyzes
the information from tests which are non strippable.

In order to test the performance of BP algorithm we run the procedure on the regular-
regular graph for β = 1/4 and α = log 2 as we did for EA. The total error probability as
a function of c is reported in Fig. 2a (black squares). As for EA, a non-detection/detection
phase transition occurs at c̃ = 1/(log 2)2. Thus, even if BP is more sophisticated than EA,
their performances coincide in the large N limit. Let us give a heuristic explanation of this
result, which will be detailed in the last part of this section. BP sets to zero the sure zeros and
to one the sures ones and the only additional information which it exploits with respect to
EA is contained in the reduced graph. In particular the performance on the isolated variable
(which are not connected to the tests of the reduced graph) is the same for the two algorithms
(corresponding to the fact that we have no information on them). As is shown by the scaling
in (28), in the N → ∞ limit, almost all ‘one’ variables are sure as long as c > β/(α| log(1−
exp(−α))|). This in turn implies that the probability for a test to be strippable (and thus
not to carry additional information) goes to one in this regime (see (13)). Therefore EA and
BP performances should coincide for c > β/(α| log(1 − exp(−α))|). Since for β > 1/2 this
regime includes the threshold point c̄ = (1 − β)/(α| log(1 − exp(−α))|), the equality of EA
and BP thresholds should follow. A proof of this equality via the analysis of the probability
that a variable is isolated will be detailed below .

In Fig. 3a we plot instead the total error of EA and BP when β = 2/3 for N = 215. The
data indicates that the BP algorithm performs much better than EA in this case: the reduced
graph carries information which is used by BP to optimize the procedure. We have also
verified that the difference between BP and EA performance does not diminish as the size of
the graph is increased. In Fig. 3b we plot the results for BP again in the case β = 2/3 but for
different values of N . The data become sharper as N is increased. Similarly to the β = 1/4
case, this seems to indicate the presence of a sharp phase transition in the thermodynamic
limit (although the evidence is not as strong, as we don’t have any analytical prediction to
compare the data with).

To summarize, one can expect that BP is better than EA only in the case β > 1/3. For
smaller β , we shall now argue that BP and EA have the same performance.

Let us start by evaluating the non-detection/detection threshold from BP equations. We
denote by P0(H) and P1(H) the expectation over the random graph distribution of the prob-
ability for the full local field on i conditioned to the fact that xi = 0 and xi = 1, respectively.



794 M. Mézard et al.

Fig. 3 (Color online) (a) Error probability as a function of c for a regular-regular graph using EA (black
squares) and BP (red circles). The graph parameters are chosen as in (18), with p = N−β , β = 2/3, α = 1
and N = 215. The continuous line corresponds to formula (30). As explained in the text, the discrepancy
between the latter and the numerical results confirms that in this regime the approximations leading to (30)
are not verified. (b) Error probability as a function of c using BP. We set again β = 2/3, α = 1 and we choose
N = 215 (red circles), 212 (blue squares), and 29 (green diamonds)

From the BP equations it is easy to obtain the following ’replica symmetric’ cavity equations
satisfied by P0(H) and P1(H) [18]:

P0(h) =
∑

l≥0

�l

∫ l∏

b=1

dQ0(ub)δ

(

h − p
∏

b ub

p
∏

b ub + (1 − p)
∏

b(1 − ub)

)

, (33)

P1(h) =
∑

l≥0

�l

∫ l∏

b=1

dQ1(ub)δ

(

h − p
∏

b ub

p
∏

b ub + (1 − p)
∏

b(1 − ub)

)

+ λ1δ(h − 1),

(34)

where

P 0(h) =
∑

l≥1

λl

∫ l−1∏

b=1

dQ0(ub)δ

(

h − p
∏

b ub

p
∏

b ub + (1 − p)
∏

b(1 − ub)

)

, (35)

P 1(h) =
∑

l≥1

λl

∫ l−1∏

b=1

dQ1(ub)δ

(

h − p
∏

b ub

p
∏

b ub + (1 − p)
∏

b(1 − ub)

)

, (36)

Q0(u) =
∑

k

ρk

∫ k−1∏

j=1

[∑

yj

pyj (1 − p)(1−yj )dP yj (hj )

]

×
[

δ(u)

k−1∏

j=1

δyj ,0 +
(

1 −
∏

j

δyj ,0

)

δ

(

u − 1

2 − ∏
j (1 − hj )

)]

, (37)
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Q1(u) =
∑

k

ρk

∫ k−1∏

j=1

[∑

yj

pyj (1 − p)(1−yj )dP yj (hj )

]

×
[

δ

(

u − 1

2 − ∏
j (1 − hj )

)]

. (38)

It is now easy to verify that P0(0) = S0 and P1(1) = S1, where S0 and S1 are the prob-
ability that a variable is sure zero and one respectively, and are given by (19) and (20).
Furthermore the following relation holds

P0(p) = P1(p) ≥ �[Q0(1/2)] = �[Q1(1/2)] = �[1 − ρ(1 − pS̃1)] = I,

where I is the probability that a variable is isolated, given in (22).
The probability of setting to a wrong value the i-th variable is Ebit = E0

bit + E1
bit with

E0
bit = (1 − p)

∫ 1

1
2

P0(H)dH, (39)

E1
bit = p

∫ 1
2

0
P1(H)dH. (40)

By using the above inequalities in these expressions for the bit error probabilities one
obtains the following inequalities

E0
bit ≤ (1 − p)(1 −P0(0) −P0(p)) = (1 − p)(1 − S0 − I ), (41)

pI = pP1(p) ≤ E1
bit ≤ p(1 −P1(1)) = p(1 − S1). (42)

We will now show how it is possible to locate the non-detection/detection transition from
these inequalities without the need to evaluate the bit error probabilities.

The leading order of the quantities S0, S1 and I have been evaluated in Sect. 4.1. Fur-
thermore, for β +d < 0 the higher order corrections give S0 = 1 −Nd −f N−β+d logN and
I = Nd − f Nd−β logN where f = exp(−α)(α/2 + 1)/(1 − exp(−α)). Thus

N−β+d ≤ Ebit ≤ 2f N−β+d logN.

Therefore, in the assumption of independent bit errors, we get

1 − exp(−N1−β+d) ≤ Etot = 1 − (1 − E1
bit − E0

bit)
N ≤ 1 − exp(−N1−β+d logN)

for β + d < 0, namely cα| log(1 − exp(−α))| > β . Since β < 1/2 we have 1 − β > β

and the above bounds on the total error imply the occurrence of a phase transition at the
same value c̄(α) found with the EA algorithm (see (31)). Thus the performance of EA and
BP coincide if the approximations leading to (19), (20) and (22) are correct. By the dis-
cussion at the end of Sect. 4.1 we know that these approximations are under full control
for β < 1/6 and we expect them to hold also up to β < 1/3. We conclude that in this
regime the value of the threshold for BP transition equals the one for EA (31), as is in-
deed confirmed by the numerical results that we already discussed for the case β = 1/4
(see Fig. 2). We stress that there is no reason for that to be true in the regime where the
approximations of neglecting proper loops which lead to (19), (20) and (22) do not hold.
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For example, as is shown in Figs. 3a and b, in the case β = 2/3 even if a sharp non-
detection/detection phase transition seems to occur when N → ∞, the error probability
is certainly not in agreement with (30) which for the chosen parameters would yield to a
threshold at c � 1.453.

Note that in the discussion above we have upper bounded the bit error with the error
over all variables that are neither sure nor isolated and lower bounded it with the error over
isolated variables. It is thus immediate to see that the position of the phase transition remains
unchanged for all algorithms which set to zero all the isolated variables and set to the correct
value the sure variables (EA is indeed the simplest algorithm which belongs to this class).
This is due to the fact that the mean number of tests in the reduced graph goes to zero in the
detection regime −d > 1 − β > 2/3, as can be checked using formula (13) and neglecting
loops.

Finally, we would like to stress that even if we have shown that EA and BP inference
procedures are optimal for R-R and P-R pool designs when β < 1/3, this does not imply that
these algorithms are optimal for all the possible designs of the factor graph. One indication
that they might be optimal comes from the results on two-stage exact algorithms presented
in Sect. 5. As a further check we have evaluated the thresholds for the Poisson-Poisson (P-P)
and Poisson-regular (P-R) cases. Using the same technique as above, we found in both cases
a non-detection/detection phase transition which occurs at the same threshold for EA and
BP. If we set K = α/p, M = cα logN , L = cα logp the threshold value is

c̄(α) = 1 − β

α exp(−α)
. (43)

By optimizing (43) over the choice of α we get α̃ = 1 and M = eNp| logp|, which is larger
than the optimal threshold for R-R and R-P.

5 Two-Stage Algorithms

In this section we analyze two-stage exact algorithms when the number of items, N , goes to
infinity and the defect probability, p, goes to zero as p = 1/Nβ . This setting was first dis-
cussed by Berger and Levenshtein in [15] where they proved that if 0 < β < 1, the minimal
(over all two-stage exact procedures) mean number of tests, T (N,p), satisfies the bounds

1

log 2
≤ lim

N→∞
T (N,p)

Np| logp| ≤ 4

β
.

In [16] two of the authors have derived the prefactor for the above scaling when 0 ≤ β < 1/2,

lim
N→∞

T (N,p)

Np| logp| = 1

(log 2)2
(44)

and constructed a choice of algorithms over which this optimal value is attained. Note that
our analysis includes the case β = 0, namely the situation in which the limit p → 0 is
taken after N → ∞. Note that the asymptotic result (44) is 1/ log 2 above the information
theoretic bound T (N,p) ≥ Np| logp|/ log 2. In Sect. 5.1 we give a short account of the
derivation of (44) and we construct an optimal algorithm. In Sect. 5.2 we test the perfor-
mance of algorithms corresponding to different choices of the random pools of the first
stage.
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5.1 Optimal Number of Tests for p = 1/Nβ , β ∈ (0,1/2]

An exact two-stage algorithm involves a first stage of tests after which all variables are
identified and set to their value. Then a second stage is performed where all the remaining
variables are individually tested. The mean number of tests, T (N,p), is therefore given by

T (N,p) = M + N −
N∑

i=1

(pi
s0 + pi

s1), (45)

where M is the number of tests of the first stage and pi
s0 and pi

s1 are the probabilities for
variable i to be sure zero and sure one. The latter in turn are given by (8) and (9) with Na’s
and Ni ’s being the neighborhood of tests and variables of the first stage.

It is immediate to verify that in the limit N → ∞ and p → 0 the number of individual
check over undetected ones is irrelevant, i.e.

T (N,p)

Np| logp| = M + N − ∑N

i=1 pi
s0

Np| logp| . (46)

Furthermore pi
s0 is always upper bounded by the expression (10) obtained by neglecting

loops, as is proven in [16] by using Fortuin-Kasteleyn-Ginibre inequality [20]. We define
f ( �m) to be the fraction of sites such that among their neighbors there are m1 tests of de-
gree 1, m2 tests of degree 2, etc. By using (10) and (46), the optimal number of tests over
all two stage procedures can be lower bounded as

T (N,p)

Np| logp| ≥ inf
f ( �m)

(∑
�m f ( �m)(

∑N

j=1
mj

j
+ (1 − p)P ( �m))

p| logp|
)

, (47)

where the infimum is over all possible probability distributions f : (1, . . . ,N)N → R+ with∑
�m f ( �m) = 1 and

P ( �m) =
N∏

i=1

(1 − (1 − p)j−1)mj . (48)

Minimization over f ( �m) can then be carried out and leads in the limit p → 0 to

T (N,p)

Np| logp| ≥ 1

(log 2)2
. (49)

Furthermore the above minimization procedure shows that this infimum is attained for
f ( �m) = δ �m,m̄ with m̄i = δi,log 2/p[| logp|/ log 2]. This implies that the lower bound is sat-
urated on the uniform distribution over regular-regular graphs with L = [| logp|/ log 2] and
K = [log 2/p] provided that we can neglect loops in the evaluation of pi

s0. This, as already
explained in Sect. 4.1, is true as long as β < 1/2. Note that the optimal result is also at-
tained if instead of a random construction of pools we fix a regular-regular graph which has
no loops of length 4 and has the same choices of test and variable degrees as above. The
existence of at least one of such a graph for these choices of K and L when β < 1/2 is
guaranteed by the results in [19]. Thus we have established the result (44) for the optimal
value of tests over all exact two-stage procedure, and we have shown a construction based
on regular-regular graphs which attains this optimal value.
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5.2 Testing Different Pool Designs for p → 0

We will now check the performance of different pool designs corresponding to different
random distributions for the pools in the first stage. In all cases we will fix the degree profiles
� and P and consider a uniform distribution over graphs with these profiles. Using the
notation of Sect. 3 and neglecting the presence of loops, the mean number of tests (45) can
easily be rewritten

T (N,p)

N
=

∑
k ρk/k

∑
l λl/ l

+ (1 − p)�
[
1 − ρ[1 − p]]

+ p�
[
1 − ρ

[
(1 − p)(1 − λ[1 − ρ[1 − p]])]] (50)

(we suppose that the fraction of both test and variable nodes of degree zero is equal to zero).
As for the one stage case, we consider four different choices of the connectivity distributions
corresponding to regular-regular (R-R), regular-Poisson (R-P), Poisson-Poisson (P-P) and
Poisson-regular (P-R) graphs and for each choice we have optimized over the parameters
of the distribution. The corresponding degree profiles and edge perspectives are given in
Sects. 4.2 and 4.3. The first term of the r.h.s. of (50) corresponds to the total number of
tests of the first stage per variable, i.e. L/K , while the second and third terms correspond to
(1 − p)(1 − S0) and pS1 respectively, where S0 and S1 have already been evaluated in the
previous section (see (19), (20), (23), (24)).

We now let K = α/p and L = cα| logp| + v (in order to keep corrections in M to
the leading term Np| logp|) and we evaluate (50) for the different pool designs. Then we
optimize over the parameters α and c.

5.2.1 Regular-Regular and Regular-Poisson Case

If we set d = cα| log(1 − exp(−α))|, both in the R-R and R-P case we get

T (N,p)

N
= cp| logp| + vp/α + pd(1 − exp(−α))v + o(p1+d). (51)

Thus the optimal value for p → 0 is given by d = 1, namely

c(α) = 1

α| log(1 − exp(−α))| .

By optimizing over α we get ᾱ = log 2 and c̄ = 1/(log 2)2. Then minimizing over v we get

T

Np
=

(
1

log 2

)2

(| logp| + 1 + 2 log log 2). (52)

5.2.2 Poisson-Poisson and Poisson-Regular Case

If we set f = cα exp(−α), for both the P-P and P-R case we get

T (N,p)

N
= cp| logp| + vp/α + pf exp(−v exp(−α)) + o(p1+f ). (53)
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Fig. 4 Expected mean number of tests divided by the information theoretic lower bound
NH(p) = N(p log2 p + (1 − p) log2(1 − p)) for the regular-regular graphs which optimize (50). The
non-analyticity points correspond to the values of p where the optimal degree pair L,K changes, see Fig. 5.
In the small p limit the curve goes asymptotically to 1/ log 2 in agreement with (44)

Thus the optimal value for p → 0 is given by f = 1, namely

c(α) = 1

α exp(−α)
.

By optimizing over α we get ᾱ = 1 and c̄ = e. Then minimizing over v we get v = −e, thus

T

Np
= e| logp| + o(pf ). (54)

5.3 Optimal Algorithms at Finite p

The above results show that both for regular-regular and regular-Poisson graphs the optimal
asymptotic value (44) can be reached in the case p → 0, while this is true neither in the
Poisson-Poisson nor in the Poisson-regular case. Note however that this does not exclude the
existence of other distributions for which the optimal value is attained. We stress once more
that even if when we performed optimization we did not make any assumption on how p →
0, the results hold only if proper loops can be neglected in the resulting optimal graphs. This
includes the following regimes: either p → 0 after N → ∞ or p = 1/Nβ with β < 1/2. The
reason why we focused on the p → 0 limit is twofold. On the one hand one often deals in
practical applications with problems in which the defective probability is small. On the other
hand the information theoretic lower bound T (N,p) ≥ Np| logp|/ log 2 already tells us that
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Fig. 5 Values of L (continuous line) and of logK (dotted line) corresponding to the couples L,K which
give the optimal mean number of tests of Fig. 4

if p �→ 0 the number of tests is proportional to N as in the trivial procedure which tests all
variables individually. However one could be interested in the optimal random pool design
for the first stage if instead p is held fixed. A natural conjecture in view of the results of the
previous sections is that, at least for sufficiently small p, this corresponds again to a regular-
regular graph. In order to solve this problem one should find the best degree sequences
�,P which minimize the expression (50). This is a hard minimization problem which we
simplified by first proving for a general choice of N and p that at most 3 coefficients �l

and at most 5 coefficient Pr are non zero in the optimal sequence. Plugging this information
in some numerical minimization procedure of (50), we have observed that for most values
of p the optimal degree sequence is the regular-regular one. There are also some values
where the optimal graph is slightly more complicated. For instance for p = .03, the best
sequences we found are �[x] = x4 and P [x] = .45164 x21 + .54836 x22, giving T = .25450,
slightly better than the one obtained with the optimal regular-regular one, �[x] = x4 and
P [x] = x22, giving T = .25454. But for all values of p we have explored, we have always
found that either the regular-regular graph is optimal, or the optimal graph has superposition
of two neighboring degrees of the variables, as in this p = .03 case. In any case regular-
regular is always very close to the optimal structure. In Fig. 4 we depict the expected mean
number of tests (divided by the information theoretic lower bound NH(p) = N(p log2 p +
(1 − p) log2(1 − p))) obtained by the numerical minimization of (50) on the ensemble of
regular-regular graphs. In the small p limit the curve goes asymptotically to 1/ log 2 as
predicted by (44). In Fig. 5 we depict instead the corresponding optimal degree couples
K,L. Note that the non-analyticity points for the expected mean number of tests correspond
to the values of p where the optimal degree pair L,K changes.
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6 Perspectives

As recalled in the introduction, Group Testing strategies are used in a variety of situations
ranging from molecular biology to computer science [1–12]. In most of the applications
it is important to take into account the possibility of errors in the tests answers [2, 13,
21–23], i.e. to consider the faulty-case instead of the gold-standard case analyzed in this
work. BP equations for cavity biases and fields analogous to those of Sect. 4.3 can be de-
rived also in the faulty setting and a natural development of the present work is to analyze
the performance of the corresponding BP algorithm. A similar task has been performed in
[13] for a setting relevant for fault diagnosis in computer networks.

It is important to notice that the relevant form of the test errors depends on the specific
application at hand. In the majority of the situations in which GT is a useful tool, one can
assume that the errors occur independently in different pools. Thus the error model is com-
pletely defined by the probability of false positive and false negative answers. These can be
pool independent or in some cases they depend only on the size of the pool. An example
of the latter situation is given by blood screening experiments for which the false negative
probability increases with the size of the pools due to the inevitable dilution effect [2, 21].

Finally, it is important to bear in mind that, at variance with our analysis, in practical
situations one should take into account finite size corrections as well as the fact that the
maximal size of the pool may be limited by experimental constraints.
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